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SUMMARY

In this paper we describe certain spectrum transformation techniques that can be

used to transform a diverging iteration into a converging one. We consider two

techniques called spectrum scaling and spectrum enveloping and discuss how to obtain

the optimum values of the transformation parameters. Numerical examples are given to

show how this technique can be used to transform diverging iterations into converging

ones; this technique can also be used to accelerate the convergence of otherwise

convergent iterations.

Consider the linear system

I. INTRODUCTION

Ax =b (1)

which may be rewritten as

x=Tx=c (2)

and solved using the iteration

x,÷ I = T X n + C (n k 0) (3)

This iteration, called the basic iteration, converges to the unique solution of

equation (2) if and only if the spectral radius of the iteration matrix T is

smaller than i, i.e., p(T) < I.

When the basic iteration defined by equation (3) is convergent, a number of

methods can be used to accelerate the rate of convergence. Such acceleration schemes

are known as Chebyshev acceleration (ref. 7), semi-iterative methods (SIM) (refs. 4

and i0), and hybrid SIM (ref. 3). Several important optimality results have been

established in the cited papers.

Now consider the case when the basic iteration described by equation (3) is

divergent, i.e., when some eigenvalues of the iteration matrix T lie outside the

unit circle (#(T) > i). In such cases, only a few techniques are known that allow

for the solution of equation (2) to be obtained iteratively. In particular, when the

real parts of all eigenvalues of the basic iteration matrix T lie in the interval

(-I,i), it is possible to use the spectrum enveloping technique (refs. 2 and 8) to

transform the basic iteration in such a way that the modified iteration is guaranteed

to converge. When the real part of any eigenvalue of T lles outside the interval



(-i,i) most of the acceleration schemesfail, except possibly for the hybrid SIM
which has been shownto apply in certain special situations (ref. 3).

Weconsider the situation where the eigenvalues of the iteration matrix T may
lie anywhere in the left half of the complex plane, in fact, real (_) < I, where

= _ + i T _ _(T), a(T) = set of all eigenvalues of T. In this situation, a simple
linear transformation can be used to map G(T) onto S = {_ = _ + iT: -I < real (_)

= _ < i}. Once the transformed eigenvalue spectrum lies in S, an enveloping ellipse

can be defined to obtain guaranteed convergence. The composite procedure is

equivalent to a polynomial mapping of G(T) the unit circle.

In this paper, we examine the conditions under which the spectrum scaling and

spectrum enveloping transformations are successful. We determine the optimum values

of the transformation parameters and show that the parameters of spectrum scaling may

be chosen so as to obtain convergence. The spectrum scaling may also be used to

accelerate the convergence when the basic iteration given by equation (3) is

convergent. The spectrum enveloping transformation is used to obtain even faster

convergence. We present examples to exhibit the theoretical and computational values

of the transformation parameters and corresponding values of asymptotic convergence

factors.

2. THE SPECTRUM SCALING

Consider the basic iteration:

x,+ I = T x, + c, (n _ 0), x o arbitrary (4)

Assume that the eigenvalue spectrum of the iteration matrix T' denoted by _(T), is

a compact set in the complex plane C. Let _ = _ + i T be an eigenvalue of T. The

iteration (4) is convergent if p(t) < i, i.e., I_I 2 - I_ 2 + _I < 1 for all _E_(T).

The iteration (4) diverges if I_I > 1 for any _a(T).

Now consider the case when I_I > i. In particular, let

-- < a _ Real (_) = _ & A < 1

-- < -b _ Imag (() = W _ b < -

(5)

i.e., a(T) is contained in the rectangle [a,A]x[-b,b] in the complex plane.

We define a two-step iteration

za+ I = T x a + c

xn,I =p zn_I + (i -p) xn

The combined form of equation (6) is given by

xn. _ = TIxn+ pc

(6)

(7)

_ _, _



where

T I = pT + (i - p) I

The eigenvalues _' (= _' + i_') of T' are related to the eigenvalues

through the following relations:

of

(8)

T

('--p( + (i -p)

6' =P_ + (l-P),

The scaling parameter

and for some 7_(0, i):

p must be chosen such that I_'I _ 7 < 1 for all

-1 < -y _ {' = p({ - 1) + 1 ( y < i

_6_(T)

orl

(9)

As equation (9) must hold for all _ = { + i_, the value of the scaling parameter p

must satisfy

0 < i-7 _p_ _ (10)
1 - A 1 - a

This condition requires that

A - a _ Y < 1 (ii)
0 < 7o - 2 - A - a

With conditions (i0) and (Ii), the eigenvalue spectrum _(T') of T' lies in S:

(i= 6' ÷ /.'e o(f)

-i < -y • _y < 1

__ < _bl-Y _ _i _ b____+A <1 -A

The spectral radius p(T') of the transformed matrix T' is given by p2(T')

= 72 + p2b2, which is the smallest when p takes its minimum permissible value

(i - 7)/(1 - A). Thus,

pX(T ) = 72 + b _ (i - 7) 2
(I - A) 2

Theorem i. - The value of _(T') given by equation (13) is minimum when

chosen such that 7 = max (7 n, 71), where 70 = (A - a)/(2- A- a)and

71 = k/(l + k), k = b2/(l __)2

(12)

(13)

is



Proof. - From equation (13), p2(T') = 72 + k(l - 7) 2, where k = b2/(l - A) 2 > 0.

This expression takes a local minimum when 7 = 71 = k/(l + k). Consider two cases:

If 70 < 71 < I, the minimum value of p(T') is clearly obtained when 7 = 71 • In

this case, p(T') = _ = 4[k/(l + k)] < i. If 71 < 70 < 1, the value of p(T') is

an increasing function of 7 in (70' i) and the minimum value of p(T') is obtained

when 7 = 70" In either case, the minimum value of p(T') is obtained when

7 = max(70, 71 ).

Remarks. - The spectrum scaling defined in this section is applicable whenever

= Real(_) < 1 for all eigenvalues _ of the iteration matrix T. Similar scaling

can be defined, and corresponding values of optimal parameters obtained, when _ > 1

for all eigenvalues of T.

3. THE SPECTRUM ENVELOPING

If the eigenvalue spectrum of the iteration matrix T lies in the infinite set

S {_: -i < real(_) < i} in the complex plane, irrespective of whether T defines a

convergent or a divergent iteration, a spectrum enveloping transformation can be

defined to obtain accelerated convergence (refs. 2 and 8). In this section, we

consider the problem of obtaining the optimum values of the transformation

parameters.

Let the eigenvalues _ = _ + iT of the basic iteration matrix T satisfy the

following conditions:

-I < -7 _ Real (_) : _ _ y < 1 (14)

Define an ellipse, lying entirely within S, with semi-axis of length M lying on

the imaginary line and semi-axis of length m lying on the real line, 0 < m <l. The

spectrum enveloping iteration for the basic iteration (3) may be written as follows:

z.+ I = T y. + c

Y,+I = (I + X_ _)z.. I - _ Y,-I

(15)

where _ = (m - M)/(m + M), and _ is the unique root in (0, i) of

(m - M)_ 2 - 2_ + (m + M) = 0.

It is known (refs. 2 and 8) that the sequence {y} defined by equation (15) is

convergent whenever _ is nonzero; the asymptotic convergence factor is given by

M+m
_=

I+_[M2 - m2 + I]

M+m
<P0 = _-_, as m < 1

1 -m
-i <i

I+M



The semi-axes m, M of the enveloping ellipse must be chosen so as to contain

all elements of the set G(T); i.e., m, M must be chosen such that

72/m 2 + p2/M2 _ i. This requires that M _ mp/4 [m 2 - 72]. As _ is an increasing

function of M, we use the smallest value of M to define the enveloping ellipse:

M _ m@ (16)

V[m2 - Y_]

We now have,

I* < Po = 1 - f(m)

where

f (m) =
i - m

1 + --------_-- (17)

V'[m2 - Y2.1

In order to obtain the optimum convergence we minimize the value of _0; this is

equivalent to the problem of maximizing the value of f(m).

Theorem 2. - f(m) given by equation (17) is maximum when m lies in the interval

(7, 7_'J).

of

Proof. - Note that

f(m) is given by

f(7) = f(1) = 0 and f(m) > 0 for

f! (m) =

-I + p(y2_m3)
(m' - y')'12
Az

m E( 7, i). The derivative

(18)

2/3

where inA is the denominator in equation (17). As f' (7) > 0,.and f'(7 _2/_ O, thepeak the graph of f(m) is obtained somewhere between m -- _ and .

The next result describes an optimum value of m.

Theorem 3. - An optimum value of the semi-axis m is given by the positive root

of the equation

(I + _)m 3 - 1.5 y2m - _y2 = 0 (19)

Proof. - The maximum value of the function f(m) is obtained at the point where

f'(m) = 0. From equation (18), f'(m) = 0 when

(y2 _ m 3) = (m 2 _ y2)3/2

which gives, as a first approximation,

p - = m3(i- 1.s 1
m2 )

which yields the cubic equation (19).

5



From Theorem3, the positive root of equation (19) gives the optimum value of m:

when D = (7/2)412#2(1 + #) - 72]/(1 + #)3 _ 0. The above root of equation (19) is

valid when # is large enough so that D _ 0. In this case, the value of

often be approximated by

When # is small so that

are given by

m may

m = mz = 2[_)I/3(0"5v_8_
(21)

72 > [2#2(1 + #)], the three (real) roots of equation (19)

2

m = Y_ (1 ;_)] c°s _3,

2

Y (z ¥ I}) cos 3

(22)

where cos(#) = 7-I#412 + 2#]. In this case, the optimum value of m is given by

the root in equation (22) that lies in the interval (7, 72/3) • If no such value of

m is available from equation (22), the length of the semi-axis m is taken as

72/3 . In either case, the value of m given by equations (20) and (22) provides a

near optimum value of the asymptotic convergence factor # < #0 = 1 - f(m) and the

asymptotic rate of convergence is given by -log # > -log #0"

4. THE COMPOSITE TRANSFORMATION

The composite transformation is obtained by first applying the spectrum scaling

to the iteration given in equation (3), and then applying the spectrum enveloping to

the scaled iteration given by equation (7). The composite iteration is described as

follows:

Yn*1 = p(l + A_2)(Ty.+z + c) + (I - p)(l + A_2)y. - _2yn_ I (23)

This is a stationary two-step iteration. As all optimized semi-implicit methods for

equation (2) degenerate into stationary two-step methods on computers with finite

word length (ref. 7), we need consider only two-step iterations. This iteration

involves the parameters P, 7, m, and M defined by

_ A-a _7 <i '0 < _ p _ , 0 < Yo - 2 - A - a

A - m-M 0 < 7 < m < i, M= mpb

6 •



The optimum values of these parameters are given by:

Y = max(yo, Yz)

where

70 = (A - a)/(2 - A - _a)

-_i = k/(l + k), k = 52/(1 - A)

(24a)

(24b)

A_ m-M
m+M

(24c)

M _ mpb

where m is given by Theorem 3. The asymptotic convergence factor

(23) is given by

M+m
_= <i

1 + VM2 - m s + 1

The asymptotic rate of convergence is -log_ > -logp(T).

(24d)

for iteration

I

5. THE COMPUTATIONAL ALGORITHM

When the basic iteration defined by equation (3) is divergent under the

conditions given by equation (5), it is often a simple matter to estimate the

dominant eigenvalue of the iteration matrix T using the power method (ref. 12).

This eigenvalue may provide a good estimate for a and b; the value of A may be

estimated through the use of the power method on the matrix (T - al). Of course,

more sophisticated methods are available in the literature for estimating the extreme

eigenvalues of T (see, e.g., (refs. 6 and ii)).

Once the values of a, A, and b are available, the scaling parameter p, the

scaled matrix T', and the optimum scaling interval (-7, 7) may be obtained from

Section 2. If the eigenvalues of T satisfy the conditions (14) of Section 3, or if

it is desired to apply the spectrum enveloping to the scaled iteration defined by

equation (7), the parameters m, M of the enveloping ellipse may be obtained from

Section 3 and convergence follows.

The composite iteration described by equation (23) may be carried out in three

phases:

Phase 01 Compute using equation (23) with p = I, _ = 0 to estimate a, A, b.

Phase is Obtain scaling parameters p and _ from Theorem 1 and compute

using spectrum scaling with equation (7) (or eq. (23) with _ = 0).



Phase 2:

Phase 3:

Obtain enveloping parameters m, M, _, and _ from Theorems2 and 3
and compute using spectrum enveloping with equation (15) (or eq. (23)
with p = i).

Obtain scaling and enveloping parameters P, 7, _, _, m, and M from
equation (24) and compute using the composite iteration (23).

6. NUMERICALEXAMPLES

Wenow consider a few examples.

Example I: Consider the following convection diffusion equation representing

convection dominated flows:

_,(_u + _u) auxz --_ ÷ _-_ = 0,
0 < x < i, 0 < y < 1

with appropriate boundary conditions (refs. 5 and 8).

This differential equation is discretized on a uniform (N + i) by (N + I) grid

for f = 0.005 using central difference approximations. When the resulting linear

system of order (N - 1) 2 is solved using Jacobi iteration, the iterations diverge

for N _ 32 (ref. 8). The eigenvalue spectrum of the Jacobi iteration matrix lies in

the set S: -i < real (_) = _ + i T <l for all eigenvalues _; an enveloping ellipse

may be defined to obtain convergence. As an example, when N = 8, the eigenvalues

of the iteration matrix T satisfy -7 _ _ _ 7, -P _ _ _ P with 7 = 0.46194,

= 5.75574, and p(T) = 5.7742 (fig. i). The parameters for the enveloping ellipse

in phase 2 may be obtained from equation (21) as m = 0.5665 and M = 9.943266 and

the asymptotic convergence factor is given by fi = 0.957404.

The eigenvalue spectrum of the Gauss-Seidel iteration matrix lies outside the set

S; the conditions (5) are satisfied with a = -33.1385, A = 0.2134, b = 5.3176,

p(T) w 33.3419 (fig. 2). Optimum values of the scaling parameters P, 7 are

obtained from Theorem i: 7 = max(70, 7z) = max(0.954955, 0.978587) = 0.978587 and

p = (i - 7)/(1 - A) = 0.027222. The scaled matrix T' of phase 1 satisfies

_(T') _ _[72 + p2b2] = 0.989235 < 1 (fig. 3). The use of spectrum enveloping of

phase 2 provides the parameters for the enveloping ellipse: m = 0.98568,

M = 1.208813 which provides even faster convergence with the asymptotic convergence

factor fi = 0.988280.

Example 2z Consider the biharmonic equation:

c_4___uu+ 2______u_u+ _u _ 0, 0 < x < i, 0 < y < 1

ax 4 ax2ay 2 ay 4

with prescribed boundary conditions. This equation is discretized on a uniform

(N + I) by (N + I) grid using the standard 13-point finite difference approximation

(refs. 1 and 9). The resulting linear system of order (N - 1) 2 may be solved

iteratively.

When Jacobi iteration is used to solve the resulting linear system, the

iterations are found to be divergent for all values of N and the spectral radius of

the iteration matrix is found to be close to 2. As an example, for N = 8,



a = -1.9699, A = 0.9454, b = 0.02927, and p(T) = 1.9699 (fig. 4). The spectrum

scaling is applicable with the optimum values of scaling parameters given by

Theorem I: 7 = 0.9639 and p = 0.6613. The resulting iteration of phase 1 is

convergent with p(T') = 0.9641 (fig. 5). When the spectrum enveloping of phase 2 is

applied to the transformed iteration given by T', the optimum values of the

enveloping ellipse are given by m = 0.98205 and M = 0.101171 and the composite

iteration is convergent with the asymptotic convergence factor _ = 0.892256.

When Gauss-Seidel iteration is used to solve the linear system corresponding to

discrete biharmonic equation, the iterations are convergent, e.g., for N = 8, p(T) =

0.901248. Spectrum scaling of phase 1 may still be carried out: For N = 8,

a = -0.001816, A = 0.898199, b = 0.074083 (fig. 6). The spectrum sca1_ng is

applicable with the scaling parameters 7 = 0.815514, p = 1.81222, an_ p(T') =

0.826491. The composite use of spectrum scaling and spectrum enveloping in phase 3

gives p = pb = = 0.134255, m = 0.872879, and M = 0.376549 and the cQmposite

iteration defined by equation (23) converges with the asymptotic convergence factor

= 0.7730.

CONCLUSIONS

We have described two spectrum transformation techniques, viz., spectrum scaling

and spectrum enveloping, that can be used to transform a diverging iteration into a

converging one. We have also discussed the method of obtaining the optimum values of

the transformation parameters. Numerical examples show that, in addition to their

effectiveness on divergent iterations, these techniques are also useful for

accelerating the convergence of an already converging iteration.
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